LCRC BOARD OF DIRECTORS

DR. LARRY HOLLIER, CHAIRMAN
Chancellor, LSU Health Sciences Center—New Orleans

DR. LEE HAMM, VICE-CHAIRMAN
Senior Vice President and Dean, Tulane University, School of Medicine

MS. BARBARA GOODSON, SECRETARY/TREASURER
Deputy Commissioner of Administration, State of Louisiana

DR. GENE D’AMOUR
Special Assistant to the President, Xavier University

MR. TERRANCE GINN
Associate Commissioner for Finance & Administration, Board of Regents

MR. WALTER J. LEGER, JR.
Senior Partner, Leger & Shaw Attorneys and Counselors

DR. WILLIAM MCDYADE
Executive Vice President & Chief Academic Officer, Ochsner Health System

DR. STEVE NELSON
Dean, School of Medicine, LSU Health Sciences Center—New Orleans

MS. PAMELA RYAN

DR. OLIVER SARTOR
Medical Director, Tulane Cancer Center
Assistant Dean for Oncology, Tulane Medical School

MS. CARROLL SUGGS

MR. PAIGE SENSENBRENNER
LCRC Board Counsel, Adams and Reese, LLP

LCRC SCIENTIFIC LEADERSHIP

DR. AUGUSTO OCHOA, CO-DIRECTOR, LCRC
Director, Stanley S. Scott Cancer Center, LSU Health Sciences Center—New Orleans

DR. PRESCOTT DEININGER, CO-DIRECTOR, LCRC
Director, Tulane Cancer Center, Tulane University Health Sciences Center

DR. THOMAS WIESE, ASSOCIATE DIRECTOR, LCRC
Associate Professor, Xavier University of Louisiana

DR. JOHN COLE, ASSOCIATE DIRECTOR, LCRC
Director of Oncology Research, Ochsner Cancer Institute

LCRC ADMINISTRATION

MR. SVEN DAVISSON
Chief Administrative Officer

MS. DEBORAH REEDER
Chief Financial Officer
2017 WAS QUITE A YEAR in cancer research and therapy. This year saw the advent of personalized treatments on a whole new level. CAR-T cells harness the patient’s own immune system to fight disease, while Merck saw the approval of the first drug that specifically targets cancers based on their genetic fingerprints. Our own scientists and clinicians at the LCRC also made several innovations relating to personalized, precision care and research. These cutting-edge advances and initiatives demonstrate that here in Louisiana, we are able to bring the very best kind of care and research.

Both Tulane and LSU have launched new initiatives centering on genetic sequencing of patient samples, expanding existing LCRC capabilities. These initiatives will bring a level of detail and personalization to future cancer treatments. In addition Ochsner has also launched a program to incorporate patient genetic and other data into their treatment processes. Our researchers across all partner institutions are focusing more and more on the individual, tailoring their approaches to the complex nature of cancer. This personalized focus, recognizing that all cancers are different, will allow for better treatments to be leveraged—all to the benefit of the citizens of Louisiana and the Gulf South.

As we move forward into 2018, the national focus on personalized cancer care and research will only continue to sharpen. Here at the LCRC, we are prepared to lead the way for the region. The research done and patients treated here will help the overall effort to understand and treat cancer on an international scale. I look forward to helping to lead the way into this exciting new era of cancer research and treatment at the LCRC. Be sure to look for more exciting advances throughout the year, and I wish all of our partners, staff, donors, and community members a safe and prosperous New Year.

SVEN DAVISSON
Chief Administrative Officer
FOCUSING ON THE INDIVIDUAL

This year’s annual report theme, “Precision Research, Personalized Medicine”, reflects the LCRC’s efforts in the light of a banner year for cancer research and treatment. Two major breakthroughs in the treatment of cancer centered on personalized medicine. Our researchers and clinicians are bringing this ethos and mindset directly to Louisiana and the Gulf South. These advances are impacting cancer care at every stage, from screening and early detection to the treatment of advanced and refractory disease. The LCRC is helping to drive forward cancer research and care at all levels, with each partner institution leveraging its unique and complementary assets and skills in pursuit of a singular goal. The LCRC and its partners are able to look back on the past year with pride in the advances we have helped bring to fruition, and eagerly looks ahead to continuing to build on those advances in the coming year.

Images of LCRC-targeted cancers courtesy of the National Institutes of Health
FOCUSING ON THE INDIVIDUAL

This year's annual report theme, “Precision Research, Personalized Medicine”, reflects the LCRC's efforts in the light of a banner year for cancer research and treatment. Two major breakthroughs in the treatment of cancer centered on personalized medicine. Our researchers and clinicians are bringing this ethos and mindset directly to Louisiana and the Gulf South. These advances are impacting cancer care at every stage, from screening and early detection to the treatment of advanced and refractory disease. The LCRC is helping to drive forward cancer research and care at all levels, with each partner institution leveraging its unique and complementary assets and skills in pursuit of a singular goal. The LCRC and its partners are able to look back on the past year with pride in the advances we have helped bring to fruition, and eagerly looks ahead to continuing to build on those advances in the coming year.
Researchers from Tulane, LSU and Xavier universities are collaborating together to provide bioinformatics and sequencing core services to investigators who are part of a five-year, $6.8 million National Cancer Institute Program Project grant (P01) headed up by Rolf Renne, Ph.D., at the University of Florida. The grant, entitled Noncoding RNAs in Gamma-Herpesvirus Biology and AIDS Malignancies, involves comparative studies of Kaposi’s sarcoma herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 in the hopes of accelerating the discovery of pathways regulated by non-coding RNAs that contribute to tumorigenesis.

“The Virus RNA-Seq and Bioinformatics Core—one of three that are part of this program project grant—serves as a hub that brings together clinical resources, informatics expertise, and infrastructure to facilitate the needs of P01 investigators,” said Erik Flemington, Ph.D., professor of pathology at Tulane and director of the Core.

Dr. Flemington’s Core is built upon a solid foundation of previously existing LCRC resources and personnel. It supports a subcontract with LSUHSC to facilitate the acquisition of valuable KSHV and EBV Kaposi’s sarcoma and lymphoma specimens from HIV-infected patients through the NIH-supported LSUHSC/LCRC HIV Clinical and Biospecimen Repository. The Core also leverages the existing expertise and infrastructure of Tulane’s Cancer Crusaders Next Generation Sequence Analysis Core—also headed up by Dr. Flemington. This resource provides expertise in a wide array of computational and analysis approaches for processing high-information-content biological data, including a broad range of virus-specific methods. It also benefits from close relationships with local statistical modeling experts, pathway interaction modeling experts, and computer scientists at Tulane, LSU, and Xavier University of Louisiana. In fact, Dr. Karen Zhang at Xavier has a second subcontract within the Core.

Dr. Flemington is also the leader of one of three research projects that are part of the larger P01 grant. His project investigates the relationship between EBV and viral long non-coding RNAs. “EBV is an etiological agent in most HIV-AIDS-associated lymphomas,” said Flemington. “Previous investigations into the role of EBV genes in the establishment and maintenance of infection and in oncogenesis have focused primarily on protein-coding genes. Our recent studies, however, have revealed that EBV encodes dozens of viral long non-coding RNAs (vlncRNAs). For this project, we begin investigations into this newly appreciated group of viral transcripts. Our preliminary studies suggest that they play diverse roles in virus reactivation, latency and EBV-associated tumorigenesis.”
The overall mission of the Translational Genomics Core (TGC) is “to provide genomic service to our scientific community with the highest standards of quality, service and commitment. Our purpose is to work with the researchers from the planning of the experiments until the completion of it”.

The core in its current state is the result of a growing demand of LSUHSC and surrounding Universities to use up-to-date technologies to fulfill their questions about the role of genomics in their newly found scientific data. In 2008 the LSUHSC School of Medicine, the Stanley S. Scott Cancer Center and a COBRE grant from Dr. Augusto Ochoa updated the core by incorporating high through put technologies like array-based analyses (GWAS, methylation, exome, among others) and next-generation sequencing platforms (MiSeq and NextSeq500). Among the techniques run in the core are: Sanger sequencing, whole transcriptome sequencing, exome sequencing, chromatin-immunoprecipitation sequencing (ChIP-seq), microbial sequencing, small RNA sequencing, among others. The core has established protocols to work with high quality nucleic acids as well as with DNA and RNA samples extracted from formalin-fixed paraffin-embedded tissues (FFPE). The TGC is housed in rooms 928, 930 and 931 of the LCRC building, which in addition to LSUHSC researchers includes Tulane, Dillard and Xavier Faculty.

The TGC is currently funded by a phase III COBRE grant (Ochoa PI), a phase I COBRE (Reiss PI) and the Stanley S. Scott Cancer Center. In addition the TGC generates revenue from a fee-based service provided to institutional and non-institutional users and establishes contracts with local, National and international institutions. The core is Directed by Dr. Jovanny Zabaleta, a basic Science Immunologist with a Ph. D. in Genetics and expertise in Genomics. Dr. Zabaleta has been funded through sub-projects in COBRE grants (PI), U54 and P20 grants (co-Investigator) and is the PI of the project of a recently awarded P20. He supervises the work of Li Li, M.D. and Jone Garai, Ph.D. who are in charge of processing the samples that come to the core.

In addition, with the support of the Cancer Center, Dr. Zabaleta offers users the possibility of bioinformatics analysis through the use of the fee-based Illumina’s BaseSpace Sequencing Hub and the analysis of cellular pathways with the software MetaCore. The TGC, through Dr. Zabaleta’s collaborations, has served also as a training ground for students at the B.A, Master’s, Ph.D., M.D. and residency levels. Dr. Zabaleta, through his work in the TGC, has mentored one Master’s student, 4 Ph.D students, and two M.D.s in their Residency work.

The TGC has been instrumental in the generation of many publications in peer-reviewed journals, including 21 in the last two years... [HAS LED] TO THE ESTABLISHMENT OF COLLABORATIONS WITH RESEARCHES AT VARIOUS CENTERS INCLUDING THE NIH, UNIVERSITY OF MISSISSIPPI MEDICAL CENTER, STONY BROOK UNIVERSITY IN NEW YORK, UNIVERSITY OF CALIFORNIA-SAN FRANCISCO, TULANE AND DILLARD UNIVERSITY IN NEW ORLEANS, THE OCHSNER CLINIC FOUNDATION IN NEW ORLEANS, VANDERBILT UNIVERSITY MEDICAL CENTER IN NASHVILLE, TN, THE COLOMBIAN NATIONAL CANCER INSTITUTE IN BOGOTA, COLOMBIA; THE UNIVERSITY OF ANTIOQUIA IN MEDELLIN, COLOMBIA; THE MEXICAN INSTITUTE OF SOCIAL SECURITY, AND THE MEXICAN NATIONAL INSTITUTE OF PUBLIC HEALTH, AMONG OTHERS.
Brandi Resendez’s 14-year-old daughter, Alexis, started complaining of a sore neck in the summer of 2016. Resendez first thought it might be all the work Alexis was putting in preparing for high school cheerleading tryouts, but the pain continued to get worse. Alexis also started to lose weight because it hurt to eat, and she was exhausted all the time.

A trip to the emergency room revealed a mass in Alexis’ chest near her thyroid gland, and she was referred to Dr. Emad Kandil, chief of endocrine surgery at Tulane University School of Medicine.

Kandil performed the first-ever robotic thymectomy in the world, using a single incision under the armpit. Thymectomy is a surgical procedure to remove tumors from the thymus, a gland located at the base of the neck that produces T cells. Traditionally, surgeons had to split the breastbone to remove the thymus, requiring a long incision in the chest and leading to more recovery time for the patient.

Kandil performed the first-ever robotic thymectomy in the world, using a single incision under the armpit. Thymectomy is a surgical procedure to remove tumors from the thymus, a gland located at the base of the neck that produces T cells. Traditionally, surgeons had to split the breastbone to remove the thymus, requiring a long incision in the chest and leading to more recovery time for the patient.

Kandil is a pioneer of performing thyroid surgeries in the same way. He uses a robotic surgery system that provides a detailed 3-D magnified view of the anatomy around the thyroid, which enables him to perform precise surgery through a single incision. Using this minimally invasive approach, patients heal faster, and many are able to go home the same day.

In Alexis’ case, Kandil was able to use robotic thymectomy to remove the tumor from her thymus gland. He removed the chest mass through a hidden incision under the armpit.

“When Dr. Kandil came in that waiting area and told me he was able to remove the whole mass, I remember jumping up and hugging him,” Resendez said. Alexis went home the following day, quickly showing signs of improvement. A month later, the teen was back to tumbling and, shortly after that, she tried out for the cheerleading squad.

She made the team.

“Alexis is like a whole different kid,” said Resendez. “She is doing so well; she does not complain about pain, she has so much energy. Her cut under her arm is getting lighter and lighter, and it healed very well.

“I hope that every hospital will be able to get a robotic machine, but I know that Dr. Kandil is the best using the machine,” she said. “He can’t be at 10 hospitals at the same time, but if you are lucky enough to have him teach people how to accomplish what he did on my daughter, people will recover so quickly from surgery.”
A Tulane researcher wants to know if, as they get older, parents can more readily pass a specific type of genetic damage down to their children - even if they’re not carriers themselves. The National Institute on Aging recently awarded geneticist Victoria Belancio, an associate professor of structural and cellular biology at Tulane, $250,000 to study the link between parental age and the amount of DNA damage associated with the activity of the retroelement L1 in their child.

As people get older, their bodies begin to lose the ability to repair DNA damage. A genetic parasite called L1 retrotransposon can insert itself into cellular DNA and degenerate it over time. Belancio believes that children born to older parents may contain more damage caused by L1 insertions because these inserts may accumulate with age in the parent, particularly in the mother’s germline.

“I think time is an important characteristic for this process because the longer a cell has the opportunity to be exposed to L1, the more likely that something could go wrong due to the accumulation of genomic instability,” Belancio says.

Belancio developed a mouse model in which researchers inserted a human L1 element into the mouse DNA. The mice are allowed to have pups from the time they become sexually mature until they reach an advanced age. Belancio’s team then looks at L1 integrations in the offspring produced by the same breeding pairs at different ages. Belancio hopes that her research can eventually lead to a better understanding of the impact L1 damage may have on humans.
The primary objective of the COBRE Grant is to strengthen biomedical research infrastructure at LSUHSC and to support a group of promising junior investigators (PJIs) focused on virus-associated cancers. This will be accomplished by establishing a thematic multi-disciplinary Center for Translational Viral Oncology (CTVO).

The CVTO has three major components: (i) mentoring teams composed of NIH-funded and internationally recognized scientists in the areas of virology and/or cancer research, as well as clinical mentors who have both research experience and active medical practices related to oncology and/or virology. These teams will interactively guide PJIs in the development of cutting edge projects dedicated to understanding the mechanistic role of viruses in cancer with special emphasis on clinical relevance; (ii) use of clinical material from a high-risk patient population – PJIs will have preferential access to a unique set of clinical data and biospecimens collected from cancer patients from multiple hospitals in the region, and HIV-infected patients from the LSUHSC HIV Outpatient (HOP) Clinic; (iii) integration of the CTVO with the existing research and clinical infrastructure at LSUHSC and development of two new state-of-the-art Research Core Facilities serving the CVTO and other COBREs in the state of Louisiana.

The scientific program brings together four Research Projects, and two Pilot Studies led by the PJIs receiving guidance from both laboratory-based (research) and clinical mentors. These teams will focus on the research related to well-established oncogenic viruses, including, Epstein-Barr virus (EBV), and human papillomavirus (HPV), as well as viruses, for which, increasing data suggest an important role in human cancer etiology, including the human cytomegalovirus (HCMV), human endogenous retrovirus sequences (HERVs), and human neurotropic polyomavirus JC (JCV). These viruses are etiologic agents or are associated with malignances of primary interest to patients in Louisiana, including: cervical, head and neck, and anogenital cancers (HPV), lymphoma (EBV), lung cancer (HIV-HPV), Kaposi Sarcoma (HIV-KSHV-HERV), and brain tumors (HCMV and JCV). These cancers arise more commonly in the setting of immunodeficiency (including HIV infection), and existing data support disparate outcomes for many of these cancers in African-Americans who comprise the majority of the HIV-infected population in Louisiana and the greater New Orleans area.

The mentoring teams reflect local expertise in the clinical care of these patients and will facilitate research directly related to cancers. These programs also leverage strengths of the leading academic health centers including: LSU Health Sciences Center, Tulane Medical Center, and Ochsner Medical Center, as well as the new Louisiana Cancer Research Center which is the home for collaborative research from these three institutions. This research is allowing LSU Health Sciences Center and the Louisiana Cancer Research Center to develop a strong and competitive research program in an area of great national importance as is the increase of cancers with infection.

NEW CELL SORTER ALLOWS FOR SORTING AND IMAGING OF MILLIONS OF CANCER CELLS

Blood, tissue, organs, even tumors — all of these are made up of complex mixtures of cells. In order to better understand and study these complex biological systems, researchers need to be able to examine exactly what types of cells are there and how many of them there are. The LCRC’s new ImageStream Mark II Imaging Flow Cytometer will allow our researchers to examine the complex mixtures of cells in cancer. This new piece of equipment, funded by State of Louisiana capital outlay for the LCRC, works by using lasers to detect molecules bound to specific markers on cells. These markers “light up”, with the different combinations on each cell telling our researchers what each specific cell type is. This machine represents a significant advance over earlier machines. It takes an image of each cell in the sample, which can have millions of cells. This gives our researchers invaluable additional information about the cells that make up each sample and aid them as they work to understand the origins and evolution of cancer, in addition to the specific effects of cutting-edge treatments being studied and developed at the LCRC.

LCRC RESEARCHERS RECEIVE $10M GRANT TO STUDY VIRUS CONTRIBUTIONS TO CANCER

The primary objective of the COBRE Grant is to strengthen biomedical research infrastructure at LSUHSC and to support a group of promising junior investigators (PJIs) focused on virus-associated cancers. This will be accomplished by establishing a thematic multi-disciplinary Center for Translational Viral Oncology (CTVO).

The CVTO has three major components: (i) mentoring teams composed of NIH-funded and internationally recognized scientists in the areas of virology and/or cancer research, as well as clinical mentors who have both research experience and active medical practices related to oncology and/or virology. These teams will interactively guide PJIs in the development of cutting edge projects dedicated to understanding the mechanistic role of viruses in cancer with special emphasis on clinical relevance; (ii) use of clinical material from a high-risk patient population – PJIs will have preferential access to a unique set of clinical data and biospecimens collected from cancer patients from multiple hospitals in the region, and HIV-infected patients from the LSUHSC HIV Outpatient (HOP) Clinic; (iii) integration of the CTVO with the existing research and clinical infrastructure at LSUHSC and development of two new state-of-the-art Research Core Facilities serving the CVTO and other COBREs in the state of Louisiana.

The scientific program brings together four Research Projects, and two Pilot Studies led by the PJIs receiving guidance from both laboratory-based (research) and clinical mentors. These teams will focus on the research related to well-established oncogenic viruses, including, Epstein-Barr virus (EBV), and human papillomavirus (HPV), as well as viruses, for which, increasing data suggest an important role in human cancer etiology, including the human cytomegalovirus (HCMV), human endogenous retrovirus sequences (HERVs), and human neurotropic polyomavirus JC (JCV). These viruses are etiologic agents or are associated with malignances of primary interest to patients in Louisiana, including: cervical, head and neck, and anogenital cancers (HPV), lymphoma (EBV), lung cancer (HIV-HPV), Kaposi Sarcoma (HIV-KSHV-HERV), and brain tumors (HCMV and JCV). These cancers arise more commonly in the setting of immunodeficiency (including HIV infection), and existing data support disparate outcomes for many of these cancers in African-Americans who comprise the majority of the HIV-infected population in Louisiana and the greater New Orleans area.

The mentoring teams reflect local expertise in the clinical care of these patients and will facilitate research directly related to cancers. These programs also leverage strengths of the leading academic health centers including: LSU Health Sciences Center, Tulane Medical Center, and Ochsner Medical Center, as well as the new Louisiana Cancer Research Center which is the home for collaborative research from these three institutions. This research is allowing LSU Health Sciences Center and the Louisiana Cancer Research Center to develop a strong and competitive research program in an area of great national importance as is the increase of cancers with infection.

DNA damage is assessed in cancer cells using different markers and images of individual cells in a large sample.
Ductal carcinoma in situ (DCIS) is the most common type of non-invasive breast cancer (stage 0), accounting for up to 30% of all diagnosed cases. Clinical and epidemiological evidence suggests that nearly half of patients with DCIS left untreated will progress to invasive breast cancer. However, because of the inability of physicians and researchers to distinguish lesions that will progress to invasive cancer from those that will remain non-invasive, all DCIS patients are currently treated with surgery with or without radiation. This impacts more than 70,000 women per year in the U.S. and 1.3 million over the past 30 years, leaving many to cope with harsh physical side effects, emotional scars, and diminished quality of life.

“This overtreatment dilemma demands the need for individualized patient care based on biomarkers that predict which patients will progress,” said Heather Machado, Ph.D., assistant professor of biochemistry and molecular biology at Tulane and principal investigator on a recently awarded five-year, $1.7 million National Cancer Institute R01 grant to study DCIS progression – her first R01.

Unfortunately, very little is known about how pre-invasive DCIS cells acquire the ability to invade the adjacent stroma or how the stroma influences localized invasion,” said Machado. “The long-term goal of this project is to identify a mechanism by which DCIS cells proliferate and/or invade the surrounding tissues and define how the stroma promotes progression to invasive cancer, addressing major knowledge gaps in the field of premalignancy. We believe that the results of these studies will have significant clinical impact and may possibly change the way DCIS is currently managed, impacting tens of thousands of patients each year.”
Guangdi Wang is a professor at Xavier University of Louisiana whose research has focused on developing effective therapeutic agents for treatment of breast cancer, especially in the metastatic or advanced setting. LCRC has provided crucial early funding for his research projects between 2007 and 2014. The LCRC funds have been used to purchase state-of-the-art equipment, support research scientists working in Dr. Wang’s laboratory, and provide release time for Dr. Wang to dedicate his effort to breast cancer research.

Over the past ten years, these LCRC funds, along with NIH grant funding, have enabled significant progress on the development of breast cancer therapeutics. This improvement could impact up to 80% of all breast cancer patients at risk of reduced therapeutic outcome due to impaired metabolism or bioavailability.

The standard treatment of breast cancer progressing after tamoxifen is fulvestrant which is the only FDA approved selective estrogen receptor degrader. Unfortunately, fulvestrant has very poor bioavailability if administered orally, thus its standard route of administration is intramuscular injection, which takes 3-4 months to become effective. The Xavier team has developed an orally bioavailable selective estrogen receptor degrader which represents a promising timely solution to achieving therapeutically effective blood concentration within days of treatment.
CLINICAL TRIALS: BRIDGING BENCH SCIENCE AND PATIENTS

Clinical trials science or miracles? It may depend on who you ask. If you ask Alphonso Vargas, MD, a member of the LSU Health Sciences Center (LSUHSC) and a practicing Pediatric Endocrinologist at Children’s Hospital in New Orleans, he may well tell you about his miracle. Several months before his diagnosis, Dr. Vargas began experiencing severe nose bleeds, so he made an appointment to see Dr. Bryan Boulmay, an Oncologist at LSUHSC and member of the LCRC. The news was devastating: he was diagnosed with Merkel Cell carcinoma. He knew the diagnosis was life threatening and that he might only have months to live therefore, Dr. Vargas decided to contact his longtime friend and colleague, Augusto Ochoa, MD, Director of the LSUHSC Cancer Center and Immunotherapy Program and Co-Director of the LCRC.

It just so happened that very morning, Dr. Ochoa received news that the LSUHSC clinical trials program had been selected to participate in a new immunotherapy trial for Merkel Cell carcinoma. When Dr. Vargas called and told him the news of his diagnosis, Dr. Ochoa told him that, not only are we are going to fight this disease but, we are going to defeat it. Dr. Ochoa then spoke with him about the new immunotherapy trial and, the next day Dr. Vargas was registered as the first patient in the nation for the Merkel Cell clinical trial. After receiving treatment, in October 2017, Dr. Vargas received news that he was tumor-free. This announcement was celebrated by not only his family and friends but also, the LSUHSC Cancer Center, LCRC, and the Al Copeland Foundation, who honored him at their 2nd Annual Krewe du Cure event. He was also selected as a cancer survivor honoree by the Cancer Crusaders at their Annual Survivors Luncheon. Subsequently, WWLTV News in New Orleans did a story about his experience.

So the next time someone asks why clinical trials are important, please share this story and, just maybe, there will be another miracle. We have scientific proof!

In 2017 the clinical trial program lead by LSUHSC Cancer Center and its partner institution LSUHSC Shreveport Feist-Weiller Cancer Center and the Mary Bird Cancer Center which have a combined total of 26 sites throughout Louisiana placed 300 patients on potentially lifesaving National Cancer Institutes sponsored clinical trials. This program serves all patients in Louisiana and includes a focus on the minority and underserved communities in our state. This clinical trials program is truly a statewide program to serve all of Louisiana.

TULANE’S “MAN UP!” EVENT KICKED OFF 2017 NFL SEASON WITH PROSTATE CANCER SCREENINGS

Rickey Jackson, along with several other New Orleans Saints legends, partnered with Tulane Health System for a second year to raise awareness of prostate cancer and provide free PSA screenings to eligible men at the Man Up! – Geaux Get Screened event.

PSA, or prostate-specific antigen, is a protein produced by the cells of the prostate gland. The PSA test measures the level of PSA in the blood. It is normal for men to have low levels of PSA in the blood; however, prostate cancer or benign (non-cancerous) conditions can increase PSA levels.

In addition to the free screening—a quick blood draw that can help determine one’s risk of prostate cancer—participants had the opportunity to meet and have pictures taken with former NFL players and to hear Jackson’s personal testimony about his prostate cancer diagnosis and recovery.

“We wanted to kick off the NFL season by doing something that can have a real, positive impact on our community,” said Jackson. “The guys I played with know what I faced with my cancer diagnosis, and they were more than willing to help raise awareness and get men to a screening.”

The event also featured games and prizes for kids, as well as other health information provided by Tulane experts. Participants who received a PSA screening were also eligible to win memorabilia signed by former NFL players.

“We are excited we can offer men this quick and relatively painless blood test to screen for prostate cancer,” said Dr. Raju Thomas, chair of the Department of Urology at Tulane Health System. “PSA screening is used to pinpoint patients who may be harboring cancer or other conditions such as an enlarged prostate."

This was just one of several free PSA screening events provided by Tulane Cancer Center in 2017. Screenings were also offered at the Cancer Crusaders Golf Tournament, the Gunning for a Cure prostate cancer research fundraiser and the One Man Shoot fundraising event, reaching several hundred men.

Additionally, Tulane Comprehensive Cancer Clinic—150 S. Liberty St., New Orleans, 70112—continues to offer complimentary PSA blood tests on the second Tuesday of each month.

Screening participants will be asked to complete a short questionnaire regarding family history and to provide a small blood sample. Given time constraints, a prostate exam will not be offered. Men will also be given literature describing the strengths and limitations of PSA blood testing. All participants will be notified of their PSA test results via telephone and registered letter, and those requiring follow-up will be directed to see their personal physicians or they can make an appointment to see a Tulane physician.

“If detected early, prostate cancer may be treated with a high probability of cure,” said Oliver Sartor, M.D., the Laborde Professor of Cancer Research in the Departments of Medicine and Urology at Tulane. “Through our free screening program, we’re trying to make it as convenient and painless as possible for the men of our community to take charge of their health.”
Ochsner Cancer Institute formally launched the Ochsner Precision Cancer Therapies program (PCTP) in April of 2017 as the region’s only program dedicated to providing early-phase clinical trials to cancer patients. Ochsner’s PCTP combines the institution’s clinical expertise with the translational science strength of the Translational Genomics Research Institute (TGen), a non-profit biomedical research organization at the forefront of drug discovery and development.

Early-phase clinical trials allow patients to receive innovative therapies before they are widely available. Since its inception, Ochsner’s PCTP has opened 42 early-phase trials and consented more than 130 patients for early-phase and precision medicine studies, with referral growth increasing by 22 percent in the last year.

In 2017, 450 philanthropic gifts totaling over $2 million were given to Ochsner’s PCTP, including one generous donation by Ochsner cancer patient Wayne Leonard. Leonard was diagnosed with Stage 4 lung cancer and was one of the first patients to qualify for the new precision oncology initiative Strata, a study designed to tailor a cancer patient’s treatment to information found within their tumor’s genetic profile. The information can then be used to match patients with early-phase clinical trials and enable them to participate in innovative therapies still under development.

The PCTP was also awarded a $5.13 million U01 grant from the National Cancer Institute along with consortium partners Baylor Scott & White and TGen to develop advanced screening tests for pancreatic cancer.

Additional innovative approaches from the program include the CanScript trial, which enables doctors to take a small sample of a patient’s cancer and grow out many copies of the tumor in a lab. These tumors can then be treated with various therapies in the lab, allowing physicians to actually test the effectiveness of a number of different treatments before giving one to the patient.

In addition to the CanScript trial, PCTP also offers the ground-breaking actinium study, a phase I/II study of lituzumab-actinium-225 in older patients with untreated myeloid leukemia (AML).

“We are proud to offer unprecedented new hope to the cancer patients of our region,” said Dr. Marc Matrana, Medical Director of the PCTP. “By bringing cutting-edge therapies to our patients, we are truly able to offer the breakthroughs of tomorrow to patients today. It gives them peace of mind to know that they no longer have to travel out-of-state for the most innovative treatments. My team and I look forward to continuing our relentless fight against cancer and making the most groundbreaking therapies available close to home.”

For more information about the PCTP, visit www.ochsner.org/earlyphase, call 888-995-7405, or email pctp@ochsner.org.
People with cancer are more likely to use palliative care once they learn about its benefits, according to a study led by a Tulane University researcher and recently published by the American Psychological Association. Palliative care provides relief from the symptoms and stress of serious illnesses and seeks to improve quality of life whether patients have a curable, chronic or life-threatening illness.

Michael Hoerger, an assistant professor of psychology, psychiatry, and oncology at Tulane University, led an NIH-funded experiment called Project EMPOWER that examined how patients’ preferences for palliative care were affected after they were presented with results from the ground-breaking “Early Palliative Care Study,” which demonstrated the beneficial effects of palliative care on mood, quality of life, and survival in patients with lung cancer. Participants in EMPOWER became less scared of palliative care, viewed its evidence more favorably, and said they would be more likely to accept referrals.

“Most people are scared of palliative care because they believe it means stopping treatments, giving up, or starting hospice,” said Hoerger. “When people learn they can still do their treatments and that there is good evidence that palliative care helps with side effects and the stress of their illness, of course they want it.”

A sample of 598 patients with prostate, breast, lung, colorectal, skin and other cancers were randomized to either learn about the medical evidence for palliative care (intervention group) or receive no information at all (control group). Findings indicated that 75 percent of participants who received the intervention had an increase in preferences for palliative care. The intervention effect could not be attributed to alternative explanations, such as the patients’ demographics or illness characteristics.

“Usually it takes 20 to 30 years before effective interventions are widely accessible,” Hoerger said. “We hope that by educating people about the benefits of palliative care more patients and families will feel empowered to use it.”

Donna Williams, Ph.D., Associate Dean for Public Health Practice and Community Engagement, Director, Louisiana Cancer Prevention and Control and a member of the Louisiana Cancer Research Center is concerned about community outreach, screening and health disparities so she established the Louisiana Cancer Prevention and Control Programs.

The Louisiana Cancer Prevention and Control’s (LCP) mission is to reduce the burden from cancer in Louisiana. To accomplish this, the Louisiana Cancer Prevention and Control Programs (LCP) focus on eliminating and reducing cancer-related inequalities and health disparities by providing a comprehensive, integrated and coordinated approach to the continuum of cancer service delivery. LCP is part of the National Comprehensive Cancer Control Program administered by the Centers for Disease Control and Prevention.

The Gulf States Young Breast Cancer Survivor Network is a social network of over 11,000 women primarily in Louisiana (SurviveDat), Mississippi (SurviveMiss), and Alabama (SurviveAL) who are surviving being diagnosed with breast cancer before age 45 or with a loved one who was diagnosed before age 45. The Network provides resource information and support specific to young breast cancer survivors.

LCP has two very focused programs on colorectal cancer screening. LCP partners with the American Cancer Society to coordinate the Louisiana Colorectal Cancer Roundtable, which is a group of state experts dedicated to raising colorectal cancer screening rates in Louisiana. In addition, LCP is working closely with the Louisiana Primary Care Association to assist federally qualified health centers in the state with institutionalizing practices that will insure screening for their clients.

The LCP and programs like it under the auspices of the LCRC are leading the way in screening and health disparities by bringing together communities and health care delivery systems in Louisiana.
New study results released by Tulane University oncologist Dr. Oliver Sartor hold promising news for African-American men fighting advanced prostate cancer.

African-American men treated with the immunotherapy drug sipuleucel-T had a median nine-month overall survival advantage compared to Caucasian men with the disease, according to an analysis of 1,900 patients who received the treatment between 2011 and 2013.

Sartor, C.E. and Bernadine Laborde Professor for Cancer Research and assistant dean for oncology at Tulane University School of Medicine, presented the results at the 112th American Urological Association annual meeting in Boston.

“This is the first time that I have ever seen a prostate cancer treatment seemingly work better in African Americans,” said Sartor, lead author of the study. “These new findings are very encouraging given that African-American men with prostate cancer have a mortality rate more than twice as high as Caucasian men and historically have presented with aggressive disease and have had worse outcomes in both real-world settings and controlled clinical trials.”

Sipuleucel-T is a cancer treatment that boosts the immune system to help it attack prostate cancer cells. It is used for advanced prostate cancer that no longer responds to hormone therapy.

The analysis found that African-American patients in the study had a median overall survival of 37.3 months compared to 28 months for Caucasian patients. Among the group of patients with the lowest median prostate specific antigen (PSA) levels at the time of treatment, African-American patients demonstrated over 16 months improved survival compared with Caucasian patients (54.3 months vs. 37.4 months, respectively).

“The fact that we saw an even greater benefit in African-American patients within the lower PSA quartile ranges is also important and provides further evidence that sipuleucel-T is best used early for those with metastatic hormone-resistant disease.”

Sartor was part of the steering committee that led the study registry and headed up the analysis focusing on African-American patients’ results.
Tulane University researchers have discovered that the protein PHLDB3, thought to be a potential tumor suppressor, actually allows cancer cells to thrive in pancreatic, prostate, colon, breast, lung, and other common cancers. The discovery could explain how cancer is able to overcome p53 – a key tumor-suppressing protein.

The findings, published in Nature Communications, could eventually lead to targeted diagnostic tests and treatments of certain types of cancer.

“Now that we’ve identified the molecule, we could utilize it as an anti-cancer target,” said lead study author Dr. Hua Lu, the Reynolds and Ryan Families Chair in Translational Cancer Research at Tulane. “This target can be used to develop a drug that would hopefully, combined with chemotherapy, be more effective and less toxic.”

Scientists have long known that protein p53 protects against cancer by triggering cells with DNA damage to self-destruct before they become malignant. p53 is kept in check by two genes, MDM2 and MDMX, which regulate its growth and demise. While overproduction of either of the genes or the protein is harmful, a balanced production of both p53 and the genes allows for normal cell development.

Lu and his team discovered that PHLDB3 works with MDM2 to inhibit p53, promoting tumor growth. The protein could also cause therapeutic resistance for some late stage cancers.

To ensure that PHLDB3 is an optimal drug target, Lu says the next step is to further validate the cancer-causing role of PHLDB3 by using mouse model systems either dependently or independently of p53. He says it’s also important to understand the protein’s biological role in cellular signaling and normal animal development as well as to consolidate its role in human cancer development, progression and drug-resistance.
Saks Fifth Avenue at Canal Place in New Orleans hosted the annual Key To The Cure Gala on October 11. Over the years, the fundraising event has raised more than $2,000,000 to support cancer research in Louisiana.

2017 CO-CHAIRS
Carolyn Elder
Barbara Greenberg
Lauren Wakeman

2017 SOCIAL MEDIA CHAIR
Allison Hoffman

2017 ENTERTAINMENT CHAIR
Sandra Pulitzer

2017 CORPORATE LIAISON
Sue Singer

Clockwise from top left: Scarlett Valadie, a stilt walker, and Barbara Greenberg at Key to the Cure presented by Saks Fifth Avenue and Louisiana Cancer Research Center Wednesday (Oct. 11) at One Canal Place; Event co-chairs Carolyn Elder, Lauren Wakeman, Barbara Greenberg, and LCRC Chief Administrative Officer Sven Davisson; Key to the Cure Cooperate Liaison Sue Singer and Betty Kohn. Chef Richard Papier sets out his food at Key to the Cure kick-off gala; LCRC co-directors Dr. Augusto Ochoa and Dr. Prescott Deininger with Sandra Pulitzer. (Photos: Dinah Rogers)
Nakhle Saba graduated from the Lebanese University in Beirut with an MD in 2005. He completed his residency in the Department of Internal Medicine at East Tennessee State University in Johnson City, TN and Tulane University in New Orleans, LA. In 2008, he started research-track training in hematology and medical oncology at Tulane University, where he closely worked with Laura Levy, Ph.D., on targeting the kinase PKC in B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma.

Dr. Saba joined the lab of Adrian Wiestner, M.D., Ph.D., in January 2012 at the National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH). His research at the NIH was focused on tumor biology and developing new therapeutic approaches for chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). He is certified by the American Board of Internal Medicine for Internal Medicine, Hematology and Medical Oncology. Dr. Saba joined the Tulane faculty in August 2014 as an assistant professor of medicine, and he started a translational program in B-cell malignancies. He treats patients with various blood malignancies with a focus on lymphoid cancers, and performs stem cell transplant. Dr. Saba’s lab focuses on B-cell malignancies, in particular on CLL and MCL, and addresses tumor biology, mechanisms of drug resistance, and novel therapeutic targets.

SUKI SUBBIAH
ASSISTANT PROFESSOR, LSU

Suki Subbiah made her way to Tulane University School of Medicine, after majoring in mathematics at the Tulane University in New Orleans, LA. In 2016, she started research-track training in Hematology and Oncology where she was the Chief Oncology Fellow from 2015-2016. She received both her Bachelor’s and Medical degrees from the George Washington University in Washington DC, and from there traveled to Atlanta for her Residency in Internal Medicine at Emory. While she has experience and publications covering a wide array of cancers, her current research and most recent publications are focused on castration resistant prostate cancer. Given the strength of the LCRC and its partner institutions in this area, she will no doubt be able to accomplish much as an LCRC member.

Pia Chowdry joins the LCRC as an LSU faculty member in Clinical Oncology. A physician scientist, she joins LSU from just down the street, having completed a fellowship in Hematology and Oncology at Tulane, where she was the Chief Oncology Fellow from 2015-2016. She received both her Bachelor’s and Medical degrees from the George Washington University in Washington DC, and from there traveled to Atlanta for her Residency in Internal Medicine at Emory. While she has experience and publications covering a wide array of cancers, her current research and most recent publications are focused on castration resistant prostate cancer. Given the strength of the LCRC and its partner institutions in this area, she will no doubt be able to accomplish much as an LCRC member.

NEW FACULTY

Dr. Komiya’s primary field of interest is lung/ head-neck cancer research. His initial training in Japan as a pulmonary physician gave him the opportunity to learn lung cancer management. Although he had already achieved a faculty position in Japan, he planned to become a physician scientist in the US in the field of thoracic oncology. He obtained a faculty position in 2013 to conduct clinical and basic research at The University of Kansas Medical Center before joining Tulane University in July 2017.

“I am extremely grateful to my previous supervisors for assisting me with my clinical and research activities to reach my goal,” said Dr. Komiya. “I have spent four years as a full-time pre-/postdoctoral fellow at the National Cancer Institute, where I learned molecular biology and its application to translational medicine. The discovery of a new oncogenic pathway in Dr. Kaye’s laboratory attracted me into oncology research. In later years I learned how to conduct clinical research and played a role as principal investigator for several clinical trials. At Tulane University I will conduct investigator-initiated trials (IITs) with novel compounds in adult oncology using the rich resources available to me.”

SPENCER KRANE
UROLOGY FACULTY, TULANE

Spencer Krane returns to his home town of New Orleans, where he takes his place on the Urology faculty at Tulane University School of Medicine. After majoring in mathematics and art history at the University of Michigan, he returned to New Orleans to attend Tulane School of Medicine. Subsequently, he pursued a fellowship in minimally invasive and robotic urology at Henry Ford Hospital in Detroit, where he is following prostate cancer therapy for Dr. Mani Menon, the father of robotic surgery. Dr. Krane then trained in regenerative medicine under Dr. Anthony Atala at Wake Forest Baptist Health in North Carolina, completing his urology residency there. He has also received additional specialized training in prostate cancer treatment and diagnostic techniques at the National Cancer Institute in Bethesda, Maryland.

Dr. Krane has published extensively, and his work has been used to produce guidelines for urologic care. He has 50 peer-reviewed articles in international journals, and he has presented his work both internationally and in the United States. He has won numerous awards for his research, having been recognized by the American Urological Association (AUA) in 2009 for his work in catheter-less radical prostatectomy and in 2014 for his work with prostate cancer screening. He has also been recognized by the American Society of Clinical Oncologists (ASCO). He’s part of a study funded by the Congressionally-directed Medical Research Programs, where he is following prostate cancer therapy for African American men. Here at Tulane (where he is accepting new patients and enrolling in clinical trials), Dr. Krane is specializing in personalized medicine for patients with urologic malignancies, integrating biomarkers, genomic classifications, epigenetic signatures, and imaging modalities into patient care.

TAKEFUMI KOMIYA
ASSISTANT PROFESSOR OF MEDICINE: HEMATOLOGY/ MEDICAL ONCOLOGY, TULANE

Dr. Saba’s lab focuses on B-cell malignancies, in particular on CLL and MCL, and addresses tumor biology, mechanisms of drug resistance, and novel therapeutic targets.

SUJU SUBBIAH
ASSISTANT PROFESSOR, LSU

Laura Levy, Ph.D., on targeting the kinase PKC in B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma.

Dr. Komiya’s primary field of interest is lung/ head-neck cancer research. His initial training in Japan as a pulmonary physician gave him the opportunity to learn lung cancer management. Although he had already achieved a faculty position in Japan, he planned to become a physician scientist in the US in the field of thoracic oncology. He obtained a faculty position in 2013 to conduct clinical and basic research at The University of Kansas Medical Center before joining Tulane University in July 2017.

“I am extremely grateful to my previous supervisors for assisting me with my clinical and research activities to reach my goal,” said Dr. Komiya. “I have spent four years as a full-time pre-/postdoctoral fellow at the National Cancer Institute, where I learned molecular biology and its application to translational medicine. The discovery of a new oncogenic pathway in Dr. Kaye’s laboratory attracted me into oncology research. In later years I learned how to conduct clinical research and played a role as principal investigator for several clinical trials. At Tulane University I will conduct investigator-initiated trials (IITs) with novel compounds in adult oncology using the rich resources available to me.”

SPENCER KRANE
UROLOGY FACULTY, TULANE

Spencer Krane returns to his home town of New Orleans, where he takes his place on the Urology faculty at Tulane University School of Medicine. After majoring in mathematics and art history at the University of Michigan, he returned to New Orleans to attend Tulane School of Medicine. Subsequently, he pursued a fellowship in minimally invasive and robotic urology at Henry Ford Hospital in Detroit, under Dr. Mani Menon, the father of robotic surgery. Dr. Krane then trained in regenerative medicine under Dr. Anthony Atala at Wake Forest Baptist Health in North Carolina, completing his urology residency there. He has also received additional specialized training in prostate cancer treatment and diagnostic techniques at the National Cancer Institute in Bethesda, Maryland.

Dr. Krane has published extensively, and his work has been used to produce guidelines for urologic care. He has 50 peer-reviewed articles in international journals, and he has presented his work both internationally and in the United States. He has won numerous awards for his research, having been recognized by the American Urological Association (AUA) in 2009 for his work in catheter-less radical prostatectomy and in 2014 for his work with prostate cancer screening. He has also been recognized by the American Society of Clinical Oncologists (ASCO). He’s part of a study funded by the Congressionally-directed Medical Research Programs, where he is following prostate cancer therapy for African American men. Here at Tulane (where he is accepting new patients and enrolling in clinical trials), Dr. Krane is specializing in personalized medicine for patients with urologic malignancies, integrating biomarkers, genomic classifications, epigenetic signatures, and imaging modalities into patient care.

TAKEFUMI KOMIYA
ASSISTANT PROFESSOR OF MEDICINE: HEMATOLOGY/ MEDICAL ONCOLOGY, TULANE

Dr. Komiya’s primary field of interest is lung/ head-neck cancer research. His initial training in Japan as a pulmonary physician gave him the opportunity to learn lung cancer management. Although he had already achieved a faculty position in Japan, he planned to become a physician scientist in the US in the field of thoracic oncology. He obtained a faculty position in 2013 to conduct clinical and basic research at The University of Kansas Medical Center before joining Tulane University in July 2017.

“I am extremely grateful to my previous supervisors for assisting me with my clinical and research activities to reach my goal,” said Dr. Komiya. “I have spent four years as a full-time pre-/postdoctoral fellow at the National Cancer Institute, where I learned molecular biology and its application to translational medicine. The discovery of a new oncogenic pathway in Dr. Kaye’s laboratory attracted me into oncology research. In later years I learned how to conduct clinical research and played a role as principal investigator for several clinical trials. At Tulane University I will conduct investigator-initiated trials (IITs) with novel compounds in adult oncology using the rich resources available to me.”

SPENCER KRANE
UROLOGY FACULTY, TULANE

Spencer Krane returns to his home town of New Orleans, where he takes his place on the Urology faculty at Tulane University School of Medicine. After majoring in mathematics and art history at the University of Michigan, he returned to New Orleans to attend Tulane School of Medicine. Subsequently, he pursued a fellowship in minimally invasive and robotic urology at Henry Ford Hospital in Detroit, under Dr. Mani Menon, the father of robotic surgery. Dr. Krane then trained in regenerative medicine under Dr. Anthony Atala at Wake Forest Baptist Health in North Carolina, completing his urology residency there. He has also received additional specialized training in prostate cancer treatment and diagnostic techniques at the National Cancer Institute in Bethesda, Maryland.

Dr. Krane has published extensively, and his work has been used to produce guidelines for urologic care. He has 50 peer-reviewed articles in international journals, and he has presented his work both internationally and in the United States. He has won numerous awards for his research, having been recognized by the American Urological Association (AUA) in 2009 for his work in catheter-less radical prostatectomy and in 2014 for his work with prostate cancer screening. He has also been recognized by the American Society of Clinical Oncologists (ASCO). He’s part of a study funded by the Congressionally-directed Medical Research Programs, where he is following prostate cancer therapy for African American men. Here at Tulane (where he is accepting new patients and enrolling in clinical trials), Dr. Krane is specializing in personalized medicine for patients with urologic malignancies, integrating biomarkers, genomic classifications, epigenetic signatures, and imaging modalities into patient care.
The Next Era campaign and youth in Louisiana will focus on grassroots efforts to recruit, educate, mobilize and lead efforts in their communities for smoke-free ordinances. These efforts will complement the Healthier Air for All movement so that everyone have the right to breathe smoke-free air. The Next Era partners, which consists of Louisiana high schools for the 2017-2018 fiscal year, are located in areas where TFL regional staff have deemed future ordinance work will take place.

Next Era Partner Schools/Organizations

Region 1
- Grace King High School

Region 2
- South Plaquemines High School

Region 3
- CBO Leaders in Our Communities

Region 4
- Northside Christian High School
- Rayne High School

Region 5
- Iowa High School
 - Iowa, LA

Region 6
- Dodson High School
- Atlanta High School

Region 7
- Captain Shreveport High School
- Parkway High School

Region 8
- Tensas High School
- Richwood High School

Region 9
- St. Helena Academy

TFL Goal 1
Prevent Initiation Among Youth and Young Adults

In 2017...
current cigarette use by Louisiana high school students went down compared to 2015, however cigarillos, e-cigarettes and hookah use increased.

current cigarette use among Louisiana middle school students went down compared to 2015, however e-cigarette use nearly doubled and hookah use nearly tripled.

The Next Era campaign and youth in Louisiana will focus on grassroots efforts to recruit, educate, mobilize and lead efforts in their communities for smoke-free ordinances. These efforts will complement the Healthier Air for All movement so that everyone have the right to breathe smoke-free air. The Next Era partners, which consists of Louisiana high schools for the 2017-2018 fiscal year, are located in areas where TFL regional staff have deemed future ordinance work will take place.

Down and Dirty LA is a new tobacco prevention campaign for country/rural teens. Country/Rural teens have some of the highest tobacco use rates for both cigarettes and smokeless products. Past tobacco prevention efforts have appealed mostly to urban and suburban teens because rural teens are different. Their culture, values, and lifestyle are truly distinct and reaching these teens requires an authentic voice and message.
Smoke-free laws and policies in Louisiana are intended to protect nonsmokers from secondhand smoke, this includes workers, patrons, visitors and entertainers. There are fourteen (14) municipalities throughout Louisiana that have adopted stronger policies than the state’s Smoke-Free Air Act to prohibit smoking in bars and gaming facilities. Only 20.93% of the state’s population is protected by a comprehensive smoke-free air policy.

SMOKE-FREE MUNICIPALITIES
There were five (5) Louisiana municipalities that passed and/or adopted comprehensive smoke-free ordinances in 2017

• GLENMORA
• LAFAYETTE
• COLFAK
• BATON ROUGE
• LECOMPTE

rom top: Lafayette Mayor-President Joel Robideaux signing the smoke-free ordinance; Smoke-Free Lafayette image; Secretary of the Louisiana Department of Health Dr. Rebekah Gee commemorates the 10-year anniversary of the Smoke-Free Air Act
January 2017 marked the ten year anniversary of one of the most significant victories for public health in Louisiana, the enactment of the Smoke-Free Air Act (Act 815). The Smoke-Free Air Act prohibited smoking in buildings, schools, other public places, inside places of employment, and most significantly restaurants. It did not include bars and gaming.

January 2017 marked the five year anniversary of Alexandria, the first city in Louisiana to adopt a stronger ordinance than the state's law prohibiting smoking in bars and gaming facilities.

TFL launched its Making A Killing campaign, a content marketing campaign aimed at drawing attention to the fact that political contributions have more effect on policy in the state of Louisiana than the public’s needs and wants. The goal of the campaign was to collect citizen support for a healthier Louisiana through the passage of a statewide ordinance making bars and gaming facilities smoke-free. The Making A Killing campaign will prove, through clever content, creative messaging, and compelling statistics, that expanding the Smoke-free Air Act to include bars and gaming facilities across Louisiana to protect Louisianans’ health is more important than the tobacco lobbyist’s money. Visit MakingAKilling.LA
In 2017, there were a total of 5,877 registered callers to the Louisiana Tobacco Quitline (1-800-Quit-Now). There were 2,882 registered callers eligible and enrolled into the Smoking Cessation Trust services.

The Louisiana Tobacco Quitline, 1-800-QUIT-NOW, is a 24 hour a day, confidential, free tobacco cessation helpline that links people to resources.

TFL GOAL 3
PROMOTE CESSATION RESOURCES

The African-American Male Cessation campaign launched in Shreveport and Baton Rouge. The focus of this campaign is to increase awareness of the Louisiana Tobacco Quitline (1-800-QUIT-NOW), the QuitWithUsLA.org website, and the Smoking Cessation Trust - the cessation services available to them. Campaign messaging provided resources available to help stop smoking/using tobacco, and offered personal support, 24 hours/day, and 7 days/week. Currently, African-American males, in particular those with low-socioeconomic statuses, have the highest smoking rates and are the least likely to utilize the Louisiana Tobacco Quitline.

TFL GOAL 4
ELIMINATE TOBACCO-RELATED HEALTH DISPARITIES

AFRICAN-AMERICAN MALE CESSATION CAMPAIGN

The Tobacco Quitline provides 24/7 support.
LOUISIANA CANCER RESEARCH CENTER
STATEMENT OF FINANCIAL POSITION
June 30, 2017 (with comparative financial information as of June 30, 2016)

ASSETS

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>18,373,404</td>
<td>18,505,915</td>
</tr>
<tr>
<td>Investments</td>
<td>9,413,222</td>
<td>10,193,793</td>
</tr>
<tr>
<td>Receivables—Grants</td>
<td>3,063,427</td>
<td>3,340,115</td>
</tr>
<tr>
<td>Receivables—Other</td>
<td>703,927</td>
<td>437,540</td>
</tr>
<tr>
<td>Property and Equipment</td>
<td>94,695,610</td>
<td>94,066,014</td>
</tr>
<tr>
<td>Prepaid Expenses</td>
<td>69,170</td>
<td>73,974</td>
</tr>
<tr>
<td>Deposits</td>
<td>52,400</td>
<td>52,400</td>
</tr>
<tr>
<td>TOTAL ASSETS</td>
<td>126,371,160</td>
<td>126,669,751</td>
</tr>
</tbody>
</table>

LIABILITIES AND NET ASSETS

LIABILITIES

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts Payable</td>
<td>4,808,532</td>
<td>3,317,775</td>
</tr>
<tr>
<td>Retainage Payable</td>
<td>661,396</td>
<td>644,852</td>
</tr>
<tr>
<td>Accrued Liabilities</td>
<td>76,359</td>
<td>90,916</td>
</tr>
<tr>
<td>TOTAL LIABILITIES</td>
<td>5,546,237</td>
<td>4,053,543</td>
</tr>
</tbody>
</table>

NET ASSETS

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted</td>
<td>5,838,422</td>
<td>888,174</td>
</tr>
<tr>
<td>Temporarily Restricted</td>
<td>114,986,451</td>
<td>121,728,034</td>
</tr>
<tr>
<td>TOTAL NET ASSETS</td>
<td>120,824,873</td>
<td>122,616,208</td>
</tr>
<tr>
<td>TOTAL LIABILITIES AND NET ASSETS</td>
<td>126,371,160</td>
<td>126,669,751</td>
</tr>
</tbody>
</table>
LOUISIANA CANCER RESEARCH CENTER

STATEMENT OF ACTIVITIES

Year ended June 30, 2017 (with summarized financial information for the year ended June 30, 2016)

REVENUES

<table>
<thead>
<tr>
<th></th>
<th>UNRESTRICTED</th>
<th>TEMPORARILY RESTRICTED</th>
<th>TOTAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grants</td>
<td>15,573,235</td>
<td>15,573,235</td>
<td>24,518,840</td>
<td></td>
</tr>
<tr>
<td>Lease Income</td>
<td>1,356,764</td>
<td>1,356,764</td>
<td>1,182,878</td>
<td></td>
</tr>
<tr>
<td>Investment Income/Interest</td>
<td>248,707</td>
<td>248,707</td>
<td>112,866</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>38,840</td>
<td>38,840</td>
<td>116,365</td>
<td></td>
</tr>
<tr>
<td>Fund-raising</td>
<td>199,301</td>
<td>199,301</td>
<td>211,994</td>
<td></td>
</tr>
<tr>
<td>Net Assets Released from Restrictions</td>
<td>22,314,818</td>
<td>(22,314,818)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TOTAL REVENUES</td>
<td>24,158,430</td>
<td>(6,741,583)</td>
<td>17,416,847</td>
<td>26,142,943</td>
</tr>
</tbody>
</table>

EXPENSES

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2016</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Expenses</td>
<td>5,753,012</td>
<td>5,753,012</td>
<td>5,463,935</td>
<td></td>
</tr>
<tr>
<td>Cessation Expenses</td>
<td>5,807,753</td>
<td>5,807,753</td>
<td>5,842,883</td>
<td></td>
</tr>
<tr>
<td>Salaries and Related Benefits</td>
<td>892,701</td>
<td>892,701</td>
<td>1,038,489</td>
<td></td>
</tr>
<tr>
<td>Operating Services</td>
<td>3,107,094</td>
<td>3,107,094</td>
<td>2,516,907</td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td>47,117</td>
<td>47,117</td>
<td>32,165</td>
<td></td>
</tr>
<tr>
<td>Professional Services</td>
<td>436,359</td>
<td>436,359</td>
<td>496,178</td>
<td></td>
</tr>
<tr>
<td>Travel & Meeting Expenses</td>
<td>5,893</td>
<td>5,893</td>
<td>12,672</td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>3,006,618</td>
<td>3,006,618</td>
<td>2,802,027</td>
<td></td>
</tr>
<tr>
<td>Fund-raising</td>
<td>148,189</td>
<td>148,189</td>
<td>134,680</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>3,446</td>
<td>3,446</td>
<td>20,205</td>
<td></td>
</tr>
<tr>
<td>TOTAL EXPENSES</td>
<td>19,208,182</td>
<td>19,208,182</td>
<td>18,360,141</td>
<td></td>
</tr>
</tbody>
</table>

INCREASE(DECREASE) IN NET ASSETS

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2016</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INCREASE(DECREASE) IN NET ASSETS</td>
<td>4,950,248</td>
<td>(1,791,335)</td>
<td>7,782,802</td>
<td></td>
</tr>
</tbody>
</table>

NET ASSETS, BEGINNING OF YEAR

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET ASSETS, BEGINNING OF YEAR</td>
<td>888,174</td>
<td>121,728,034</td>
</tr>
</tbody>
</table>

NET ASSETS, END OF YEAR

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET ASSETS, END OF YEAR</td>
<td>5,838,422</td>
<td>114,986,451</td>
</tr>
</tbody>
</table>
OPERATING EXPENSES 2017

- 74% Program Expenses
- 17% Facilities
- 8% Management & General
- 1% Fundraising

FUNDING SOURCES 2017

- 75% Grants — Operating
- 15% Grants — Capital
- 8% Lease Income
- 2% Investment Income/Interest & Other
- 1% Fundraising/Gifts